A METHOD FOR DESCRIBING RESONANCE BETWEEN GENERALIZED VALENCE BOND WAVEFUNCTIONS

Arthur F. VOTER and William A. GODDARD III

Arthur Amos Noyes Laboratory of Chemical Physics*, California Institute of Technology, Pasadena, California 91125, USA

Received 8 December 1980

In a valence bond (VB) description of wavefunctions there may be several distinct but energetically similar bonding structures. Examples include aromatic molecules (e.g. benzene) and excited states of molecules with equivalent chromophores (e.g. glyoxal). The variational generalization of VB theory, the generalized valence bond (GVB) method, has limitations for such systems since it can only describe one of the bonding structures, allowing no explicit mixing or "resonance" with the other structures. We present herein a method for evaluating the matrix elements necessary to optimize the mixing between the various distinct bonding structures. Evaluation of such matrix elements has heretofore been computationally difficult since the wavefunctions in general have nonzero overlap. Applications of the method are presented for the resonance in allyl radical and the splitting of the localized core hole states of N₂.

1. Introduction

For many molecules the natural approach to studying the electronic wavefunction is to superimpose the wavefunctions for various bonding structures. For example,

\begin{align}
\text{(1)} & \quad \begin{array}{c}
\text{H} - \text{C} - \text{O}^* \\
\text{O}^* - \text{C} - \text{H}
\end{array} \\
\text{(2)} & \quad \begin{array}{c}
\text{H} - \text{C} - \text{O}^* \\
\text{O}^* - \text{C} - \text{H}
\end{array} \\
\text{(3)} & \quad \begin{array}{c}
\text{H} - \text{C} - \text{O}^* \\
\text{O}^* - \text{C} - \text{H}
\end{array}
\end{align}

Unfortunately the wavefunctions for different bonding structures are generally nonorthogonal, leading to severe difficulties in evaluating the energy and in optimizing the orbitals. These difficulties become even more severe when electron correlation effects are included.

In this paper we describe an approach for calculating the interaction of nonorthogonal correlated wavefunctions that does not suffer from the usual computational dependence. In addition, we report applications of this approach to two typical problems:

(a) The resonance of the two equivalent configurations of allyl (1) where each \(\pi \) bond is correlated (GVB level).

(b) The resonance of the 1s core ionization states of N₂

\[\begin{array}{c}
\text{N} = \text{N} \quad \pm \quad \text{N} + \text{N} \quad \pm
\end{array} \]

where the core hole is allowed to be localized on one N atom, and the remainder of the molecule is fully correlated (GVB level).

2. The method

Consider a state \(\Psi \) involving the superposition of two wavefunctions \(\Psi^A \) and \(\Psi^B \),

\[\Psi = C_A \Psi^A + C_B \Psi^B, \quad (4) \]

* Contribution No. 6355.
where \(\Psi^A \) and \(\Psi^B \) are correlated (multi-configurational) wavefunctions for two possible bonding structures. [For simplicity we consider only two configurations in (4); the generalization to multiple terms is trivial.] Each correlated wavefunction \(\Psi^A \) and \(\Psi^B \) can be expanded in terms of determinantal wavefunctions \(\{ \psi_i^A \} \)

\[
\Psi^A = \sum_i C_i^A \psi_i^A,
\]

\[\psi_i^A = \mathcal{A}\left(\prod_i \phi_i^{iA} \right) \chi_i^A, \tag{6}\]

Assuming that \(\Psi^A \) and \(\Psi^B \) are normalized, the energy of the wavefunction \(\Psi \) is

\[
E = \frac{C_A^2 E_A + C_B^2 E_B + 2C_A C_B H_{AB}}{C_A^2 + C_B^2 + 2C_A C_B S_{AB}}, \tag{7}\]

where \(E_A \) and \(E_B \) are the energies of \(\Psi^A \) and \(\Psi^B \), respectively, and

\[
S_{AB} = \langle \Psi^A|\Psi^B \rangle = \sum_i \sum_j C_i^A C_j^B \langle \psi_i^A|\psi_j^B \rangle, \tag{8}\]

\[
H_{AB} = \langle \Psi^A|H|\Psi^B \rangle = \sum_i \sum_j C_i^A C_j^B \langle \psi_i^A|H|\psi_j^B \rangle. \tag{9}\]

Because of the nonorthogonality of the orbitals \(\{ \phi_k^A : k = 1, \ldots, M \} \)

\[\{ \phi_k^B : k = 1, \ldots, M \} \tag{10}\]

with

\[
\langle \psi_i^A|\psi_j^B \rangle \]

\[
\langle \psi_i^A|H|\psi_j^B \rangle \]

the evaluation of terms like \(\langle \psi_i^A|\psi_j^B \rangle \) and \(\langle \psi_i^A|H|\psi_j^B \rangle \) would normally involve tedious computation of numerous minors and subminors of the determinant of the overlaps between the A and B sets of orbitals.

The determinantal wavefunctions \(\psi_i^A \) and \(\psi_i^B \) are invariant (to within a phase) under unitary transformations \(\tilde{U}_i^{A} \) and \(\tilde{U}_i^{B} \) of the orbitals

\[
\tilde{\phi_i^{iA}} = \sum_k \phi_k^{iA} U_{ki}^{iA}, \quad \tilde{\phi_i^{iB}} = \sum_k \phi_k^{iB} U_{ki}^{iB}. \tag{12}\]

Thus, by choosing these transformations so that the new orbitals are biorthogonal \[1\]

\[
\langle \tilde{\phi}_k^{iA} | \tilde{\phi}_l^{iB} \rangle = \lambda_k \delta_{kl}, \tag{13}\]

we can greatly simplify evaluation of matrix elements such as \(\langle \psi_i^A | H | \psi_j^B \rangle \) and \(\langle \psi_i^A | \chi_i^B \rangle \). For a closed-shell configuration (only doubly-occupied orbitals) the same transformations are applied to the \(\alpha \)-spin and \(\beta \)-spin orbitals, leading to

\[
\langle \psi_i^A | \chi_i^B \rangle = \lambda_1 \lambda_2 \cdots \lambda_n, \tag{14}\]

\[
\langle \psi_i^A | H | \psi_j^B \rangle = 2 \sum_k \eta_{kl} \langle \tilde{\phi}_k^{iA} | h | \tilde{\phi}_l^{iB} \rangle \tag{15}\]

(where \(\tilde{\phi}^{iA} \) and \(\tilde{\phi}^{iB} \) have been denoted simply as \(\phi^{iA} \) and \(\phi^{iB} \)) and

\[
\langle \phi_k^A | \phi_k^B \rangle = \int d^3 r_1 \int d^3 r_2 \, \phi_k^A(1) \phi_k^B(1) \phi_k^A(2) \phi_k^B(2), \tag{16}\]

and

\[
\eta_k = (\lambda_1^2 \lambda_2^2 \cdots \lambda_n^2)/\lambda_k, \quad \eta_{kl} = (\lambda_1^2 \lambda_2^2 \cdots \lambda_n^2)/\lambda_k \lambda_l. \tag{17}\]

For a more general wavefunction in which the determinants are not closed-shell, the transformations factor into a transformation among \(\alpha \) spin orbitals and a different transformation among \(\beta \) spin orbitals (taking care that the transformation does not change the phase). The result in this case is

\[
\langle \psi_i^A | \psi_j^B \rangle = \lambda_{1a_1} \lambda_{2a_2} \cdots \lambda_{na_n} \lambda_{1b_1} \lambda_{2b_2} \cdots \lambda_{mb_m}, \tag{18}\]

\[
\langle \psi_i^A | H | \psi_j^B \rangle = \sum_k \eta_{ka} \langle \tilde{\phi}_k^{iA} | h | \tilde{\phi}_k^{iA} \rangle + \sum_{kb} \eta_{kb} \langle \tilde{\phi}_k^{iB} | h | \tilde{\phi}_k^{iB} \rangle \tag{19}\]

\[
+ \sum_{ka>la} \eta_{ka,la} \left[\langle \tilde{\phi}_k^{iA} | \tilde{\phi}_l^{iA} \rangle \langle \tilde{\phi}_k^{iB} | \tilde{\phi}_l^{iB} \rangle - \langle \tilde{\phi}_k^{iB} | \tilde{\phi}_l^{iA} \rangle \langle \tilde{\phi}_k^{iA} | \tilde{\phi}_l^{iB} \rangle \right] \tag{20a}\]

\[
+ \sum_{kb>lb} \eta_{kb,lb} \left[\langle \tilde{\phi}_k^{iB} | \tilde{\phi}_l^{iB} \rangle \langle \tilde{\phi}_k^{iA} | \tilde{\phi}_l^{iA} \rangle - \langle \tilde{\phi}_k^{iA} | \tilde{\phi}_l^{iB} \rangle \langle \tilde{\phi}_k^{iB} | \tilde{\phi}_l^{iA} \rangle \right] \tag{20b}\]

where \(ka, la \) indicate orbitals corresponding to \(\alpha \) spin, \(kb, lb \) indicate orbitals corresponding to \(\beta \) spin

\[
\eta_{ka} = \langle \psi_i^A | \psi_j^B \rangle \lambda_{ka}, \tag{20a}\]

and

\[
\eta_{ka,lb} = \langle \psi_i^A | \psi_j^B \rangle / \lambda_{ka} \lambda_{lb}. \tag{20b}\]
Thus the S_{AB} and H_{AB} of eqs. (8) and (9) can be evaluated by applying the above formulae to each pair of determinants (for an open-shell system, this requires four separate transformations to biorthogonal orbitals). For a GVB wavefunction in which each of n bonds is correlated with two natural orbitals, the resulting GVB($n/2n$)-PP wavefunction can be written as

$$
\Psi = \mathcal{A}[\rho_{\sigma} + \rho_{\pi}] + \mathcal{A}[\rho_{\pi} - \rho_{\sigma}]
$$

leading to 2^n determinants. [This leads to the evaluation of 2^{2n} terms of the form (8) and (9).] The approach can, of course, be applied to find H_{AB} between any two multiconfigurational wavefunctions.

Wavefunctions obtained by this procedure are referred to as resonating generalized valence bond or R-GVB.

The computational time required for the allyl case (13 orbitals per wavefunctions, four determinant pairs) was 105 s of CPU on a VAX 11/780, to be compared with 1300 s required to calculate the integrals over 37 gaussian basis functions and 936 s to converge the GVB $1/2$ wavefunction (19 iterations).

3. Allyl radical

There are two bonding structures for allyl radical ($\text{H}_2\text{C} = \text{CH} = \text{CH}_2$), namely,

$\begin{align*}
\text{=} & \quad \text{and} \quad \text{=} \\
\end{align*}$

That is, the π bond can be on the left or right, and the π radical orbital is on the opposite center. These wavefunctions can be combined into a resonance (stabilized) form

$$
\Psi_{\text{res}} = \text{=} - \text{=}
$$

and an antiresonance (destabilized) form

$$
\Psi_{\text{anti}} = \text{=} + \text{=}
$$

The experimental consequence of this resonance stabilization is that the CH bond energy of propene

$$
\begin{align*}
\text{H}_2\text{C} & \equiv \text{CH}_2 \\
\rightarrow \quad \text{H}_2\text{C} & \equiv \text{CH}_2 + \text{H}
\end{align*}
$$

is 87 kcal [2], whereas a terminal CH bond for an alkane would normally be 98 kcal [2]. This difference, 11 kcal, is generally referred to as the resonance energy. It need not be identical to the resonance stabilization of (23) for reasons discussed later in this section.

The wavefunctions for the bonding structures in (22) are

$$
\begin{align*}
\Psi_{\text{res}} &= \mathcal{A}[\rho_{\sigma} + \rho_{\pi}] + \mathcal{A}[\rho_{\pi} - \rho_{\sigma}]
\end{align*}
$$

and

$$
\begin{align*}
\Psi_{\text{anti}} &= \mathcal{A}[\rho_{\sigma} - \rho_{\pi}] + \mathcal{A}[\rho_{\pi} + \rho_{\sigma}]
\end{align*}
$$

(26)

where only the π electrons are written explicitly, each containing a two-electron π bond to the central atom. Optimizing the orbitals of Ψ_{res} and Ψ_{anti} leads to π orbitals ϕ_{res}, ϕ_{anti}, and ϕ_{r} that are different between Ψ_{res} and Ψ_{anti}. Fig. 1 shows the π orbitals for Ψ_{res}. The energies for the resonant and antiresonant states are given by

$$
\begin{align*}
E_{\text{res}} &= (H_{\text{res}} - H_{\text{c}})/\left(1 - S_{\text{c}}\right) = H_{\text{c}} - \epsilon_{\text{r}} \\
E_{\text{anti}} &= (H_{\text{anti}} + H_{\text{c}})/\left(1 + S_{\text{c}}\right) = H_{\text{c}} + \epsilon_{\text{a}}
\end{align*}
$$

and the resonance energy ϵ_{r} and antiresonant energy ϵ_{a} are defined. Note that the σ orbitals of Ψ_{res} and Ψ_{anti} are also slightly different, an effect that is included in these calculations.

The results are in table 1. Mixing the GVB wavefunctions Ψ_{res} and Ψ_{anti} yields $S_{\text{c}} = -0.754$ and $H_{\text{c}} = 87.763$ hartree, leading to a resonance energy $\epsilon_{\text{r}} = 9.8$ kcal. This resonance energy does not correspond exactly to the experimental value for three reasons. First, the experimental resonance energy is obtained by comparing two bonds with different steric interactions. Second, the experimental resonance energy includes the energy required to change the geometry from one long carbon–carbon single bond and one
short double bond to a symmetric geometry that can maximize electronic resonance. This acts to decrease the perceived resonance energy. Third, the \(\epsilon_r \) we define compares the energy of the optimized GVB wavefunction \(\psi_R \) with the wavefunction \(\Psi_{\text{res}} \) in which the orbitals have not been reoptimized in the presence of the resonance. Including this reoptimization would increase \(\epsilon_r \). The close agreement between \(\epsilon_r \) (9.8 kcal) and experiment (11 kcal) implies that these effects roughly balance. Work directed at quantifying these effects is currently in progress.

Previous studies of the resonance in allyl using the full GVB method \([3]\) (including optimization of spin coupling) yielded a resonance energy of 11.4 kcal. Use of a spatially projected GVB \([4]\) wavefunction gave a value of 14.3 kcal. Each of those calculations used a frozen symmetric \(\sigma \) core taken from a Hartree–Fock (HF) calculation, as optimization of the \(\sigma \) orbitals was not feasible at that level of calculation.

The antiresonance energy \(\epsilon_a \) is found to be 69.9 kcal, and decreases to 65.6 kcal if the GVB natural orbital coefficients are allowed to readjust in the presence of the resonance. This leads to a \(^2A_2 \rightarrow ^2B_1 \) excitation energy of 75.6 kcal, which compares very well with the full \(\pi \) configuration interaction (CI) result of 75.4 kcal, indicating that the resonant–antiresonant description of these states is valid.

Table 1

<table>
<thead>
<tr>
<th>Calculation</th>
<th>Single bonding structure ((H_{\text{HF}})) (hartree)</th>
<th>Resonance state ((^2A_2)) (hartree)</th>
<th>Resonance energy ((\epsilon_r)) (kcal)</th>
<th>Antiresonance energy ((\epsilon_a)) (kcal)</th>
<th>Excitation energy (^2B_1 \rightarrow ^2A_2) (kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>-116.4130</td>
<td>-116.4129 (^{f})</td>
<td>-</td>
<td>-</td>
<td>114.1</td>
</tr>
<tr>
<td>R-GVB (^{c})</td>
<td>-116.4296</td>
<td>-116.4452</td>
<td>9.8</td>
<td>69.9</td>
<td>79.7</td>
</tr>
<tr>
<td>R-GVB(r) (^{d})</td>
<td>-116.4454</td>
<td>-116.4454</td>
<td>10.0</td>
<td>65.6</td>
<td>75.6</td>
</tr>
<tr>
<td>full (\pi) CI (^{e})</td>
<td>-116.4396</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>75.4</td>
</tr>
</tbody>
</table>

\(^{a}\) All calculations use the symmetric geometry \(R(CC) = 1.40 \) Å, \(R(C-H) = 1.08 \) Å, all angles 120°.

\(^{b}\) All calculations use the Dunning–Huzenaga valence double zeta basis (9s/5p) contracted to (3s/2p) for C and the scaled basis for H 4s to 2s (scaled by 1.2).

\(^{c}\) One \(\sigma \) bond was correlated, as indicated in (26).

\(^{d}\) The CI coefficients for the natural orbital expression of the GVB wavefunction [see (21)] were allowed to reoptimize after including resonance. This is still rigorously a GVB wavefunction.

\(^{e}\) The \(\sigma \) core was taken from the HF wavefunction of the \(^2A_2 \) state.

\(^{f}\) Note that the symmetry-restricted HF solution has an energy 0.0001 hartree higher than the best HF wavefunction.
While a CI calculation can produce the most accurate results for a given basis set, it cannot yield conceptually important quantities like e_a and e_r.

4. Core ionization of N$_2$

Molecular orbitals of symmetric molecules are generally taken as symmetry functions for the symmetry group of the molecule. While this is appropriate for closed-shell molecules, some spectacular failures are known for open-shell molecules, where imposing symmetry upon the molecular orbitals leads to a much higher energy than if symmetry is relaxed. Well known examples include the lowest ionization of pyrazine [5],

\[\text{(29)} \]

and the singlet state of trimethylene methane [6],

\[\text{(30)} \]

A similar difficulty occurs upon ionizing electrons from core orbitals. Thus, for N$_2$ the ionization potential out of the 1s orbital is predicted to be almost 10 eV higher when symmetry orbitals are used to describe the ion state than when localized orbitals are used [7].

This indicates that the nature of the core ionized state is really that of a localized hole, which we can understand in the following way. The contribution each valence electron makes to the total energy goes roughly as the square of the effective nuclear charge (Z_{eff}) the electron "sees" (assuming hydrogenic behavior). For the case of the delocalized hole, each valence electron sees a new effective charge of $Z_{\text{eff}} + 0.5$, while for the localized case half the valence electrons see $Z_{\text{eff}} + 1.0$, while the other half see Z_{eff}. Since $(Z_{\text{eff}} + 1.0)^2 - Z_{\text{eff}}^2$ is always greater than $2[(Z_{\text{eff}} + 0.5)^2 - Z_{\text{eff}}^2]$, more energy is gained by the localized hole. This is borne out by the fact that the relaxation energy for the localized ion is 16.5 eV (Koopmans' IP versus direct HF), which is very close to the 15.3 eV relaxation energy of the 1s ionized nitrogen atom, while the delocalized relaxation energy for N$_2$ is only 7.3 eV. While the core ion state has the nature of a localized hole, the total wavefunction should still retain the full molecular symmetry, and does if we take the linear combinations

\[\psi_s = \psi_e + \psi_r \] \hspace{1cm} (31a)

and

\[\psi_a = \psi_e - \psi_r \] \hspace{1cm} (31b)

where ψ_e and ψ_r are the overlapping localized core hole wavefunctions.

The results of various calculations are shown in table 2. Calculations were carried out treating the neutral and ion states both at the HF level and with all valence electrons correlated, GVB(5/10). For the neutral the latter calculation leads to three bond pairs (σ, π_x, π_y) and two lone pairs ("2s") localized one on each N.

\[\text{(32)} \]

The delocalized HF calculations not only lead to an ionization potential 9.2 eV too large but they also lead to a g-u splitting energy 50% too large (0.126 versus 0.082 eV). Correlating the valence electrons leads to a slight decrease (0.32 eV) in the ionization potential and a slight increase in the splitting energy (0.082–0.093 eV). The final calculated ionization potential is 409.84 eV, in good agreement with the experimental value of 409.9 eV [8]. Such close agreement is fortuitous since correlation of the electron pair in the 1s orbital being ionized was not included (this would increase the ionization potential by ≈ 1 eV). Probably this error is balanced by some inadequacy in the basis set for describing the shape readjustment in the ion.

The very small resonant splittings are due to the very small overlap ($S_e = 0.0023$) of the localized wavefunctions in (32).
Table 2
Ionization potentials for N₂ *)

<table>
<thead>
<tr>
<th>Level</th>
<th>Ionization potential (eV)</th>
<th>Splitting energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>localized</td>
<td>2Σ⁻⁺</td>
</tr>
<tr>
<td>Koopmans' IP</td>
<td>-108.9059</td>
<td>427.59</td>
</tr>
<tr>
<td>delocalized HF</td>
<td>-108.9059</td>
<td>420.28</td>
</tr>
<tr>
<td>localized HF</td>
<td>411.05</td>
<td>411.01</td>
</tr>
<tr>
<td>GVB 5/10</td>
<td>410.65</td>
<td>410.63</td>
</tr>
<tr>
<td>experiment</td>
<td>427.59</td>
<td>427.54</td>
</tr>
</tbody>
</table>

*) All calculations performed at experimental ground state geometry (R₂ = 1.09768 Å) [12].

b) Basis I is Huzinaga's (1s/7p) primitive gaussian basis contracted to (7s/4p), allowing four functions to describe the 1s orbital.

c) Basis II is Huzinaga's (1s/7p) primitive gaussian basis contracted to (7s/5p) plus an optimized d exponent of 0.9 (further decontraction of the s and p was found unnecessary).

d) Ref. [9]. e) These numbers result from the resonance of two overlapping wavefunctions.

Local Koopmans' IP values were obtained by forming a localized φ₁s = 2⁻¹/²(1σ⁺ + 1σ⁻) and evaluating the ion energy with frozen orbitals.

Many previous calculations on core hole states of first-row diatomics have been performed [7-10] and the need for a localized description has been well established. The calculations presented here are the first to restore full symmetry to the ionic states while retaining a localized description.

Müller et al. [7] have studied the effect of core hole localization on the predicted lineshape of the photoelectron peak. They found that while a delocalized hole predicts a linewidth too large by ≈80%, a localized hole description predicts a linewidth of 0.32 eV, in reasonable agreement with the experimental value of 0.42 eV. This agreement becomes even closer if one includes the peak broadening due to the 0.093 eV state splitting we calculate.

5. Discussion

One of the first studies of the importance of symmetry lowering in HF wavefunctions was the work by Wadt and Goddard [5] on the n ion and nπ⁺ excitation states of pyrazine. They showed that the optimized wavefunction is localized but did not calculate the resonance energy by the R-GVB procedure. Instead, they converted the localized orbitals into a double set of symmetry orbitals and designed a CI calculation to mimic a resonating wavefunction. Recently Martin [11] tested these results for the positive ion by calculating the resonance energy of the localized HF wavefunction in the same fashion described in section 2. He found resonance energies essentially identical to those of Wadt and Goddard.

We have generalized this treatment to allow calculation of resonance interactions for correlated multiconfigurational wavefunctions. This is important since many electronic states are not adequately described at the HF level. This method is not limited to resonance of equivalent configurations, allowing treatment of resonance as a function of geometry, as in rectangular cyclobutadiene.
The remaining flaw in the resonating GVB approach is that the orbitals are calculated before resonating. As a result, the orbitals tend to delocalize in order to incorporate part of the resonance effect. We are currently developing an approach in which the orbitals are optimized in the presence of resonance, thus allowing each orbital to have the optimum shape for a particular localized form. This approach is more difficult than the usual self-consistent field methods because of the overlapping orbitals. It will be especially useful for cases where the delocalization tendency is so strong that the conventional wavefunction is totally delocalized.

We believe that the resonating GVB method will be useful both for quantitative and conceptual progress in analyzing wavefunctions: With this method, many complicated electronic states that previously required extensive CI calculations may be adequately described in terms of a small number of meaningful resonance contributors, a picture that is conceptually simple and chemically appealing.

Acknowledgement

The work was partially supported by a contract from the US Department of Energy (Contract No. DE-AC03-76SF00767, Project Agreement No. DE-AT03-80ER10608). The research reported in this paper made use of the Dreyfus-NSF Theoretical Chemistry Computer which was funded through grants from the Camille and Henry Dreyfus Foundation, the National Science Foundation (Grant No. CHE78-20235), and the Sloan Fund of the California Institute of Technology.

References